2. Express the given complex number in the form a+ib:i9+i19
We get the final answer
3. Express the given complex number in the form a+ib:i−39
We get the final answer
4. Express the given complex number in the form a+ib:3(7+i7)+i(7+i7)
Ans:
Evaluate the complex number
3(7+i7)+i(7+i7)=21+21i+7i+7i2
3(7+i7)+i(7+i7)=21+28i+7i2⋯[i2=−1]
3(7+i7)+i(7+i7)=14+28i
We get the final answer
5. Express the given complex number in the form
a+ib:(1−i)−(−1+6i)
Ans:
Evaluate the complex number
(1−i)−(−1+6i)=1−i+1−i6
(1−i)−(−1+6i)=2−7i
We get the final answer
We get the final answer
7. Express the given complex number in the form
Ans:
Evaluate the complex number
We get the final answer
8. Express the given complex number in the form a+ib:(1−i)4
Ans:
Evaluate the complex number
(1−i)4=[1+i2−2i]2
(1−i)4=[1−1−2i]2
(1−i)4=(−2i)×(−2i)
(1−i)4=−4
We get the final answer
9. Express the given complex number in the form
Ans:
Evaluate the complex number
We get the final answer
10. Express the given complex number in the form
Ans:
Evaluate the complex number
11. Find the multiplicative inverse of the complex number
4−3i
Ans:
Let z=4−3i
Then,
z¯¯¯=4+3i&|z¯¯¯|=42+(−3)2=16+9=25
Therefore, the multiplicative inverse of 4−3i is given by
z−1=z¯¯¯|z|2=4+3i25=425+325i
Here we got final answe
12. Find the multiplicative inverse of the complex number 5–√+3i
13. Find the multiplicative inverse of the complex number
−i
Ans:
Let z=−i
Then,
z¯=i and| z| 2=12=1
Therefore, the multiplicative inverse of −i is given by z−1=z¯| z| 2=i1=i
Here we got final answer
14. Express the following expression in the form of
Exercise 5.2
1. Find the modulus and the argument of the complex number z=−1−i3–√
2. Find the modulus and the argument of the complex number
z=−3–√+i
3. Convert the given complex number in polar form
1−i
4. Convert the given complex number in polar form
−1+i
5. Convert the given complex number in polar form −1−i
6. Convert the given complex number in polar form
−3
7. Convert the given complex number in polar form 3–√+i
8. Convert the given complex number in polar form
i